Answers :

(1) (i) Gradient of
$$AB = \frac{3-0}{6-2} = \frac{3}{4}$$

Therefore, gradient of $BC = -\frac{4}{3}$ (as $\angle ABC = 90^{\circ}$)
(ii) $\frac{(2k+1)-3}{k-6} = -\frac{4}{3}$
 $\frac{2k-2}{k-6} = -\frac{4}{3}$
 $6k-6 = -4k+24$
 $10k = 30$
 $k = 3$
Coordinates of $C = (3,7)$
(iii) since M is the mid-point of AB ,
Coordinates of $M = (\frac{6+2}{2}, \frac{3+0}{2})$
 $= (4, \frac{3}{2})$
(iv) Gradient of $DM = -\frac{4}{3}$ (since $DM \parallel BC$)
Therefore equation of DM is, $y - 4 = -\frac{4}{3}(x - \frac{3}{2})$
 $y - 4 = -\frac{4}{3}x + 2$
 $y = -\frac{4}{3}x + 6$
(v) solving $y = -\frac{4}{3}x + 6$ and $y = 16 - 8x$,
 $-\frac{4}{3}x + 6 = 16 - 8x$
 $8x - \frac{4}{3}x = 10$
 $\frac{20}{3}x = 10$
 $x = \frac{3}{2}$
 $y = 16 - 8(\frac{2}{2}) = 4$
Therefore coordinates of $D = (\frac{3}{2}, 4)$
(vi) Area of quadrilateral $ABCD = \frac{1}{2} \begin{vmatrix} 2 & 6 & 3 & \frac{3}{2} & 2 \\ 0 & 3 & 7 & 4 & 0 \end{vmatrix}$
 $= \frac{1}{2} \{(6+42+12+0) - (0+9+\frac{21}{2}+8)\}$
 $= \frac{1}{2} (\frac{65}{2}) = 16\frac{1}{4}$ square units