Answers:
(1) (i) Gradient of $A B=\frac{3-0}{6-2}=\frac{3}{4}$

Therefore, gradient of $B C=-\frac{4}{3}$ (as $\angle A B C=90^{\circ}$)
(ii) $\frac{(2 k+1)-3}{k-6}=-\frac{4}{3}$
$\frac{2 k-2}{k-6}=-\frac{4}{3}$
$6 k-6=-4 k+24$
$10 k=30$
$k=3$
Coordinates of $C=(3,7)$
(iii) since M is the mid-point of $A B$,

$$
\text { Coordinates of } M=\left(\frac{6+2}{2}, \frac{3+0}{2}\right)
$$

$$
=\left(4, \frac{3}{2}\right)
$$

(iv) Gradient of $D M=-\frac{4}{3}$ (since $D M \| B C$)

Therefore equation of $D M$ is, $y-4=-\frac{4}{3}\left(x-\frac{3}{2}\right)$

$$
\begin{aligned}
& y-4=-\frac{4}{3} x+2 \\
& y=-\frac{4}{3} x+6
\end{aligned}
$$

(v) solving $y=-\frac{4}{3} x+6$ and $y=16-8 x$,

$$
\begin{gathered}
-\frac{4}{3} x+6=16-8 x \\
8 x-\frac{4}{3} x=10 \\
\frac{20}{3} x=10 \\
x=\frac{3}{2} \\
y=16-8\left(\frac{3}{2}\right)=4
\end{gathered}
$$

Therefore coordinates of $D=\left(\frac{3}{2}, 4\right)$
(vi) Area of quadrilateral $A B C D=\frac{1}{2}\left|\begin{array}{lllll}2 & 6 & 3 & \frac{3}{2} & 2 \\ 0 & 3 & 7 & 4 & 0\end{array}\right|$

$$
\begin{aligned}
& =\frac{1}{2}\left\{(6+42+12+0)-\left(0+9+\frac{21}{2}+8\right)\right\} \\
& =\frac{1}{2}\left(\frac{65}{2}\right)=16 \frac{1}{4} \text { square units }
\end{aligned}
$$

