Answers:

(1) Mean ,
$$\mu=\frac{4+6+7+9+11}{5}=7.4$$
 Standard deviation, $\sigma=\sqrt{\frac{(4-7.4)^2+(6-7.4)^2+(7-7.4)^2+(9-7.4)^2+(11-7.4)^2}{5}}$
$$=\sqrt{\frac{11.56+1.96+0.16+2.56+12.96}{5}}$$

$$=\sqrt{5.84}=2.42$$

When each number is increased by 2, new set of numbers are 6, 8, 9, 11, 13

Mean,
$$\mu = \frac{6+8+9+11+13}{5} = 9.4$$

Standard deviation,
$$\sigma = \sqrt{\frac{(6-9.4)^2 + (8-9.4)^2 + (9-9.4)^2 + (11-9.4)^2 + (13-9.4)^2}{5}}$$

$$= \sqrt{\frac{11.56 + 1.96 + 0.16 + 2.56 + 12.96}{5}}$$

$$= \sqrt{5.84} = 2.42$$

When each number is increased by 2, the mean is increased by 2 but the standard deviation remained unchanged.

(2) Mass
$$(x)$$
 $20 \le x \le 22$ $23 \le x \le 25$ $26 \le x \le 28$ $29 \le x \le 31$ $32 \le x \le 34$ Frequency (f) 3 6 11 8 2 fx $3 \times 21 = 63$ 144 297 240 66 fx^2 $3 \times 21^2 = 1323$ 3456 8019 7200 2178

Mean,
$$\mu=\frac{\sum fx}{\sum f}=\frac{63+144+297+240+66}{30}$$

$$=27.0\ grams$$
Standard deviation, $\sigma=\sqrt{\frac{\sum fx^2}{\sum f}-\mu^2}$

$$=\sqrt{\frac{1323+3456+8019+7200+2178}{30}}-(27.0)^2$$

$$=\sqrt{\frac{22176}{30}-729}$$

$$=\sqrt{739.2-729}=3.2\ grams$$