Answers:

(1) Mean , $\mu=\frac{4+6+7+9+11}{5}=7.4$

$$
\text { Standard deviation, } \begin{aligned}
\sigma & =\sqrt{\frac{(4-7.4)^{2}+(6-7.4)^{2}+(7-7.4)^{2}+(9-7.4)^{2}+(11-7.4)^{2}}{5}} \\
& =\sqrt{\frac{11.56+1.96+0.16+2.56+12.96}{5}} \\
& =\sqrt{5.84}=2.42
\end{aligned}
$$

When each number is increased by 2 , new set of numbers are $6,8,9,11,13$
Mean, $\mu=\frac{6+8+9+11+13}{5}=9.4$
Standard deviation, $\sigma=\sqrt{\frac{(6-9.4)^{2}+(8-9.4)^{2}+(9-9.4)^{2}+(11-9.4)^{2}+(13-9.4)^{2}}{5}}$

$$
\begin{aligned}
& =\sqrt{\frac{11.56+1.96+0.16+2.56+12.96}{5}} \\
& =\sqrt{5.84}=2.42
\end{aligned}
$$

When each number is increased by 2 , the mean is increased by 2 but the standard deviation remained unchanged.
(2) $\operatorname{Mass}(x) \quad 20 \leq x \leq 22 \quad 23 \leq x \leq 25 \quad 26 \leq x \leq 28 \quad 29 \leq x \leq 31 \quad 32 \leq x \leq 34$

Frequency (f)	3	6	11	8	2

$f x$	$3 \times 21=63$	144	297	240	66

$\begin{array}{llllll}f x^{2} & 3 \times 21^{2}=1323 & 3456 & 8019 & 7200 & 2178\end{array}$

Mean, $\mu=\frac{\sum f x}{\sum f}=\frac{63+144+297+240+66}{30}$
$=27.0 \mathrm{grams}$
Standard deviation, $\sigma=\sqrt{\frac{\sum f x^{2}}{\sum f}-\mu^{2}}$

$$
\begin{aligned}
& =\sqrt{\frac{1323+3456+8019+7200+2178}{30}-(27.0)^{2}} \\
& =\sqrt{\frac{22176}{30}-729} \\
& =\sqrt{739.2-729}=3.2 \mathrm{grams}
\end{aligned}
$$

