Numbers cont'd..... The rules for Indices, if m and n are positive integers and a $\neq 0, b \neq 0$:
(a) $a^{m} \times a^{n}=a^{m+n}$
e.g. $10^{2} \times 10^{4}=10^{6}$
(b) $a^{m} \div a^{n}=a^{m-n}$
e.g. $10^{5} \div 10^{2}=10^{3}$
(c) $\left(a^{m}\right)^{n}=a^{m n}$
e.g. $\left(10^{3}\right)^{4}=10^{12}$
(d) $a^{m} \times b^{m}=(a b)^{m}$
e.g. $5^{3} \times 2^{3}=10^{3}$
(e) $a^{m} \div b^{m}=\left(\frac{a}{b}\right)^{m}$
e.g. $10^{3} \div 5^{3}=2^{3}$
(f) $a^{0}=1$
e.g. $10^{0}=1$
(g) $a^{-n}=\frac{1}{a^{n}}$
e.g. $10^{-4}=\frac{1}{10^{4}}$
(h) $a^{\frac{1}{n}}=\sqrt[n]{a}$
e.g. $27^{\frac{1}{3}}=\sqrt[3]{27}=3$
(i) $a^{\frac{m}{n}}=\sqrt[n]{a^{m}}$ or $(\sqrt[n]{a})^{m}$
e.g. $27^{\frac{2}{3}}=\sqrt[3]{27^{2}}=\sqrt[3]{729}=9$

$$
\text { or } 27^{\frac{2}{3}}=(\sqrt[3]{27})^{2}=3^{2}=9
$$

The Standard Form of numbering is $A \times 10^{n}$, where n is an integer and $1 \leq A<10$
Example:
(1) $200 \div 0.01=20000=2 \times 10^{4}$
(2) $\left(2 \times 10^{3}\right) \times\left(8 \times 10^{5}\right)=16 \times 10^{8}=1.6 \times 10^{9}$
(3) $0.02 \div 5000=20 \times 10^{-3} \div 5 \times 10^{3}=4 \times 10^{-6}$

Common prefixes for very large numbers are:
Kilo $(\mathrm{K})=10^{3}$, mega $(\mathrm{M})=10^{6}$, giga $(\mathrm{G})=10^{9}$, tera $(\mathrm{T})=10^{12}$
And prefixes for very small number are :
milli $(\mathrm{m})=10^{-3}$, micro $(\mu)=10^{-6}$, nano $(\mathrm{n})=10^{-9}$, pico $(\mathrm{p})=10^{-12}$

Example :

(1) 5×10^{11} Bytes (computer harddisk memory) $=500 \mathrm{~GB}$ memory
(2) $0.9 \times 10^{-8} \mathrm{~m}=9 \times 10^{-9} \mathrm{~m}=9 \mathrm{~nm}$

Try these questions :
(1) Simplify $\frac{32 a^{2}}{7 b^{5}} \times \frac{49 a^{3} b^{3}}{2}$
(2) Simplify $\frac{10}{\sqrt{5}} \times \frac{2}{\sqrt{5}}-\frac{\sqrt{12}}{\sqrt{3}}+\sqrt[3]{9} \times \sqrt[6]{9}$
(3) Find the value of r, when
(a) $100^{3} \times 10^{2} \div 10^{r}=1$
(b) $0.0001 \div 10^{3}=\frac{1}{10^{r}}$
(4) The mass of electron is $9.1094 \times 10^{-31} \mathrm{Kg}$.

The mass of proton is $1.6726 \times 10^{-27} \mathrm{Kg}$
The mass of neutron is $1.6749 \times 10^{-27} \mathrm{Kg}$
(a) Find the difference between the mass of proton and neutron, giving your answer in standard form.
(b) How many times more massive is the proton as compared to the electron ? Giving your answer in standard form.

