Numbers cont'd..... The rules for Indices, if *m* and *n* are positive integers and $a \neq 0, b \neq 0$:

(a)
$$a^m \times a^n = a^{m+n}$$
 e.g. $10^2 \times 10^4 = 10^6$
(b) $a^m \div a^n = a^{m-n}$ e.g. $10^5 \div 10^2 = 10^3$
(c) $(a^m)^n = a^{mn}$ e.g. $(10^3)^4 = 10^{12}$
(d) $a^m \times b^m = (ab)^m$ e.g. $5^3 \times 2^3 = 10^3$
(e) $a^m \div b^m = (\frac{a}{b})^m$ e.g. $10^3 \div 5^3 = 2^3$
(f) $a^0 = 1$ e.g. $10^0 = 1$
(g) $a^{-n} = \frac{1}{a^n}$ e.g. $10^{-4} = \frac{1}{10^4}$
(h) $a^{\frac{1}{n}} = \sqrt[n]{a}$ e.g. $27^{\frac{1}{3}} = \sqrt[3]{27} = 3$
(i) $a^{\frac{m}{n}} = \sqrt[n]{a^m}$ or $(\sqrt[n]{a})^m$ e.g. $27^{\frac{2}{3}} = \sqrt[3]{27^2} = \sqrt[3]{729} = 9$
or $27^{\frac{2}{3}} = (\sqrt[3]{27})^2 = 3^2 = 9$

The Standard Form of numbering is $A \times 10^n$, where n is an integer and $1 \le A < 10$ Example:

- (1) $200 \div 0.01 = 20000 = 2 \times 10^4$
- (2) $(2 \times 10^3) \times (8 \times 10^5) = 16 \times 10^8 = 1.6 \times 10^9$
- (3) $0.02 \div 5000 = 20 \times 10^{-3} \div 5 \times 10^{3} = 4 \times 10^{-6}$

Common prefixes for very large numbers are: Kilo (K) = 10^3 , mega (M) = 10^6 , giga (G) = 10^9 , tera (T) = 10^{12} And prefixes for very small number are : milli (m) = 10^{-3} , micro (μ) = 10^{-6} , nano(n) = 10^{-9} , pico (p) = 10^{-12}

Example :

(1) 5×10^{11} Bytes (computer harddisk memory) = 500 GB memory

(2) $0.9 \times 10^{-8} \text{ m} = 9 \times 10^{-9} \text{ m} = 9 \text{ nm}$

Try these questions :

(1) Simplify
$$\frac{32a^2}{7b^5} \times \frac{49a^3b^3}{2}$$

(2) Simplify $\frac{10}{\sqrt{5}} \times \frac{2}{\sqrt{5}} - \frac{\sqrt{12}}{\sqrt{3}} + \sqrt[3]{9} \times \sqrt[6]{9}$

- (3) Find the value of r, when
 - (a) $100^3 \times 10^2 \div 10^r = 1$

(b)
$$0.0001 \div 10^3 = \frac{1}{10^r}$$

- (4) The mass of electron is $9.1094 \times 10^{-31} Kg$. The mass of proton is $1.6726 \times 10^{-27} Kg$ The mass of neutron is $1.6749 \times 10^{-27} Kg$
 - (a) Find the difference between the mass of proton and neutron, giving your answer in standard form.
 - (b) How many times more massive is the proton as compared to the electron ? Giving your answer in standard form.